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Clinical trials for predictive medicine
Richard Simon*†

Developments in biotechnology and genomics are providing a biological basis for the heterogeneity of clinical
course and response to treatment that have long been apparent to clinicians. The ability to molecularly
characterize human diseases presents new opportunities to develop more effective treatments and new challenges
for the design and analysis of clinical trials. In oncology, treatment of broad populations with regimens that
benefit a minority of patients is less economically sustainable with expensive molecularly targeted therapeutics.
The established molecular heterogeneity of human diseases requires the development of new paradigms for the
design and analysis of randomized clinical trials as a reliable basis for predictive medicine. We review prospective
designs for the development of new therapeutics and predictive biomarkers to inform their use. We cover designs
for a wide range of settings. At one extreme is the development of a new drug with a single candidate biomarker
and strong biological evidence that marker negative patients are unlikely to benefit from the new drug. At the
other extreme are Phase III clinical trials involving both genome-wide discovery of a predictive classifier and
internal validation of that classifier. We have outlined a prediction-based approach to the analysis of randomized
clinical trials that both preserves the Type I error and provides a reliable internally validated basis for
predicting which patients are most likely or unlikely to benefit from the new regimen. Copyright © 2012 John
Wiley & Sons, Ltd.
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1. Introduction

Developments in biotechnology and genomics have provided tools for understanding the biological
basis for heterogeneity of tumors of the same primary site and identification of important molecular
targets. It has become clear that cancers of the same primary site and stage are diverse in terms of their
pathogenesis, natural history, and responsiveness to therapy; they are in many cases different diseases.
Large clinical trials to identify small average treatment effects in heterogeneous groups of patients have
resulted in practice standards in which many patients are treated with toxic and expensive drugs to which
they do not benefit. Biostatisticians now have the opportunity to develop new approaches to clinical trial
design and analysis that enables a new era of predictive medicine in which appropriate treatments can
be matched to appropriate patients in a reliable manner.

The new understanding of the heterogeneous nature of tumors of the same primary site leads to
new challenges for clinical trial design. The standard paradigm for the design of Phase III oncology
clinical trials involves broad eligibility criteria and basing conclusions on the test of the overall null
hypothesis that the average treatment effect is zero. The emphasis on broad eligibility criteria has been
based on concern that drugs found effective in clinical trials might subsequently be used in broader
patient populations [1, 2]. Some clinical trials even abandoned formal eligibility criteria in favor of
the ‘uncertainty principle’, which stated that if the individual physician was uncertain about which
treatment might be better for a patient, then that patient was eligible [3]. The focus on the overall
null hypothesis was based on concerns about the multiple testing involved in the commonly practiced
exploratory post hoc subset analysis and the assumption that qualitative interactions are unlikely [3, 4].
The advice was to perform subset analyses, but do not believe them, and the famous subset analysis of
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the ISIS-2 trial based on patient astrological sign is still prominent in the minds of many statisticians
[5]. This paradigm was based on implicit assumptions that qualitative interactions are unlikely and that
drugs are inexpensive and without serious side effects. For oncology today, none of those assumptions
are appropriate. Treating the majority for the benefit of the minority is no longer an effective public
health strategy.

Today, we are challenged to develop a new paradigm of clinical trial design and analysis that enables
development of a predictive medicine that is science based and reliable. Physicians have always known
that cancers of the same primary site were heterogeneous with regard to natural history and response
to treatment. This understanding led to conflicts with statisticians over the use of subset analysis in the
analysis of clinical trials. Although most statisticians expressed little interest in subset analysis methods
[6], the value of clinical trials for treating individual patients has sometimes been questioned. Today
we have powerful tools for characterizing the tumors biologically and can use this characterization to
provide a stronger basis for the design and analysis of clinical trials.

Most oncology drugs are being developed for defined molecular targets but the traditional diagnostic
classification schemes that are the basis for clinical trial eligibility criteria include patients whose tumors
are and are not driven by deregulation of those targets. For some drugs, the targets are well understood
and there is a compelling biological basis for restricting development to the subset of patients whose
tumors are characterized by deregulation of the drug target. For other drugs there is more uncertainty
about the target, and how to measure whether the target is driving tumor invasion in an individual patient
[7]. It is clear that the primary analysis of the new generation of oncology clinical trials must consist of
more than just testing the null hypothesis of no average effect. However, it is also clear that the tradition
of post hoc data dredging subset analysis is not an adequate basis for predictive oncology. We need
prospective analysis plans that provide for both preservation of the Type I experiment-wise error rate and
for focused predictive analyses that can be used to reliably select patients in clinical practice for use of the
new regimen [8]. These two primary objectives are not inconsistent, and clinical trials should be sized for
both purposes.

The following sections summarize some of the designs that have been developed for the new
generation of cancer clinical trials. Developing new treatments with companion diagnostics or predictive
biomarkers for identifying the patients who benefit does not make drug development simpler, quicker, or
cheaper as is sometimes claimed. Actually, it makes drug development more complex and probably more
expensive. However, for many new oncology drugs it is the science based approach and should increase
the chance of success. It may also lead to more consistency in results among trials and has obvious
benefits for reducing the number of patients who ultimately receive expensive drugs, which expose
them to risks of adverse events but provide no benefit. This approach also has great potential value for
controlling societal expenditures on health care.

The ideal approach is prospective drug development with a companion diagnostic [8]. This approach,
which is being used extensively today in oncology involves: (i) Development of a completely specified
predictive classifier using preclinical and early phase clinical studies. The classifier may be based on a
single gene or protein or a composite score incorporating the levels of expression of multiple genes.
(ii) Development of an analytically validated test for measurement of that classifier. Analytically
validated means that the test accurately measures what it is supposed to measure, or if there is no gold-
standard measurement, that the test is reproducible and robust. (iii) Use of that completely specified
classifier and analytically validated test to design and analyze a new clinical trial to evaluate the
effectiveness of that drug and how the effectiveness relates to the classifier. In the above description,
‘completely specified’ does not mean that the test is perfect. It just means that all aspects of it,
including the analytes to measure and the cut-points to be used are defined. In the enrichment
and stratified designs described below, biomarker discovery is performed prior to the Phase III trial
and a single completely specified classifier is used in the trial. We will also discuss designs and
prospective analysis plans that incorporate multiple candidate biomarkers. We will introduce a paradigm,
the predictive analysis of clinical trials (PACT), which permits classifier development and evaluation
to be validly performed in the same clinical trial. By moving from ‘subset analysis’ to ‘classifier
development’ the problem is moved from one of multiple testing to one of evaluation of
classification and prediction. By careful use of cross-validation, the principle of separating classifier
development from classifier evaluation can be preserved with both objectives performed within the
same clinical trial. With the PACT approach, the analysis plan is carefully prespecified to ensure that
treatment effects in classifier based subsets are unbiasedly estimated and that study-wise Type I error
is preserved.
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2. Enrichment designs

With an enrichment design, a diagnostic test is used to restrict eligibility for a randomized clinical trial
comparing a regimen containing a new drug to a control regimen. This approach, shown in Figure 1,
was used for the development of trastuzumab in which patients with metastatic breast cancer whose
tumors expressed HER2 in an immunohistochemistry test were eligible for randomization. Simon
and Maitournam [9–11] studied the efficiency of this approach relative to the standard approach of
randomizing all patients without using the test at all. They found that the efficiency of the enrichment
design depended on the prevalence of test positive patients and on the effectiveness of the new treatment
in test negative patients. When fewer than half of the patients are test positive and the new treatment is
relatively ineffective in test negative patients, the number of randomized patients required for an enrich-
ment design is dramatically smaller than the number of randomized patients required for a standard
design. For example, if the treatment is completely ineffective in test negative patients, then the ratio
of number of patients required for randomization in the standard design relative to the number required
for the enrichment design is approximately 1/�2 where � denotes the proportion of patients who are test
positive [11]. This equals a factor of 4 when half the patients are test positive. Under these conditions the
enrichment design also results in a more appropriate conclusion than the standard design. The conclu-
sion for the enrichment design would be that the treatment is effective for test positive patients and the
labeling indication would be restricted to test positive patients. A standard design that was large enough
to reject the null hypothesis would result in a broad approval of the treatment and would result in the
ineffective treatment of test negative patients with the new drug.

The treatment may have some effectiveness for test negative patients either because the assay is
imperfect for measuring deregulation of the putative molecular target or because the drug has off-target
antitumor effects. Even if the new treatment is half as effective in test negative patients as in test positive
patients, the randomization ratio is approximately 4=.� C 1/2. This equals about 2.56 when � D 0:25,
that is, 25% of the patients are test positive, indicating that the enrichment design reduces the number of
randomized patients by a factor of 2.56.

The enrichment design was very effective for the development of trastuzumab. Even though the test
was imperfect and has subsequently been improved, it was well defined and sufficiently accurate to
dramatically improve the efficiency of the Phase III clinical trial relative to a design that did not utilize
the test at all. Zhao and Simon have made the methods of sample size planning for the design of
enrichment trials available online at http://brb.nci.nih.gov. The web-based programs are available for
binary and survival/disease-free survival endpoints. The planning takes into account the performance
characteristics of the tests and specificity of the treatment effects. The programs provide comparisons to
standard nonenrichment designs based on the number of randomized patients required and the number
of patients needed for screening to obtain the required number of randomized patients.

Develop Predictor of Response to New Drug

Patient Predicted Responsive

New Drug Control

Patient Predicted Non-Responsive

Off Study

Figure 1. Enrichment design.
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The enrichment design is appropriate for contexts where there is such a strong biological basis for
believing that test negative patients will not benefit from the new drug that including them in would raise
ethical concerns. In many situations, the biological basis is strong but not compelling. The enrichment
design does not provide data on the effectiveness of the new treatment compared with control for test
negative patients. Consequently, unless there is compelling biological or Phase II data that the new
drug is not effective in test negative patients, the enrichment design may not provide adequate data for
regulatory approval of the test.

3. Biomarker stratified design

When a predictive classifier has been developed but there is no compelling biological or Phase II data that
test negative patients do not benefit from the new treatment, it is generally best to include both classifier
positive and classifier negative in the Phase III clinical trials comparing the new treatment to the control
regimen as shown in Figure 2. Although this is often referred to as the ‘stratification design’, what is
really essential is that an analysis plan be predefined in the protocol for how the predictive classifier will
be used in the analysis and that the trial be sized for this analysis plan. It is not sufficient to just stratify,
that is, balance, the randomization with regard to the classifier without specifying a complete analysis
plan or sizing the trial appropriately. The main value of ‘stratifying’ (i.e. balancing) the randomization
is that it assures that to be randomized a patient must have an evaluable test performed on his/her tumor.
Prestratification of the randomization is not necessary for the validity of inferences to be made about
treatment effects within the test positive or test negative subsets. If an analytically validated test is not
available at the start of the trial but will be available by the time of analysis, then it may be preferable
not to prestratify the randomization process.

With the stratification design the purpose of the clinical trial is to evaluate the new treatment overall
and in the subsets determined by the prespecified classifier. The purpose is not to modify or optimize the
classifier. If the classifier is a composite gene expression-based classifier, the purpose of the design is
not to reexamine the contributions of each gene. Several primary analysis plans are presented below to
illustrate that the plan should stipulate in detail how the predictive biomarker will be used in the analysis
and that there should be no exploratory aspect to the treatment evaluation. These strategies are discussed
in greater detail by Simon [12, 13] and a web-based tool for sample size planning with these analysis
plans is available at http://brb.nci.nih.gov .

3.1. Analysis plan for biomarker with strong credentials

If one does not expect the treatment to be effective in the test negative patients unless it is effective in the
test positive patients, one might first compare treatment versus control in test positive patients using a
threshold of significance of 5%. Only if the treatment versus control comparison is significant at the 5%
level in test positive patients will the new treatment be compared with the control among test negative

Develop Predictor of 
Response to New Rx 

Predicted Non-
responsiveto 
New Rx

Predicted 
Responsiveto 
New Rx

Control New RX ControlNew RX

Figure 2. Biomarker stratified design.
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patients, again using a threshold of statistical significance of 5%. This sequential approach controls the
overall Type I error at 5%.

To have 90% power in the test positive patients for detecting a 50% reduction in hazard for the new
treatment versus control at a two-sided 5% significance level requires about 88 events of test positive
patients. If at the time of analysis the event rates in the test positive and test negative strata are about
equal, then when there are 88 events in the test positive patients, there will be about 88(1–�//� events in
the test negative patients where � denotes the proportion of test positive patients. If 25% of the patients
are test positive, then there will be approximately 264 events in test negative patients. This will provide
approximately 90% power for detecting a 33% reduction in hazard at a two-sided significance level of
5%. In this case, the trial will not be delayed compared with the enrichment design, but a large number
of test negative patients will be randomized, treated, and followed on the study rather than excluded as
for the enrichment design. This will be problematic if one does not, a priori, expect the new treatment to
be effective for test negative patients. In this case it will be important to establish an interim monitoring
plan to terminate accrual of test negative patients when interim results and prior evidence of lack of
effectiveness makes it no longer viable to enter them.

3.2. Fallback analysis plan

In the situation where one has limited confidence in the predictive marker, it can be effectively used
for a ‘fall-back’ analysis. Simon and Wang [14] proposed an analysis plan in which the new treatment
group is first compared with the control group overall. If that difference is not significant at a reduced
significance level such as 0.03, then the new treatment is compared with the control group just for test
positive patients. The latter comparison uses a threshold of significance of 0.02, or whatever portion of
the traditional 0.05 not used by the initial test.

If the trial is planned for having 90% power for detecting a uniform 33% reduction in overall hazard
using a two-sided significance level of 0.03, then the overall analysis will take place when there are
297 events. If the test is positive in 25% of patients and the event rates in test positive and test negative
patients are about equal at the time of analysis, then when there are 297 overall events there will be
approximately 75 events among the test positive patients. If the overall test of treatment effect is not
significant, then the subset test will have power 0.75 for detecting a 50% reduction in hazard at a two-
sided 0.02 significance level. By delaying the time of final analysis of the test positive patients, power
0.80 can be achieved when there are 84 events and power 0.90 can be achieved when there are 109 events
in the test positive subset.

Wang et al. have shown that the power of this approach can be improved by taking into account the
correlation between the overall significance test and the significance test comparing treatment groups in
the subset of test positive patients [15]. Therefore, if for example a significance threshold of 0.03 has
been used for the overall test, the significance threshold for used for the subset can be somewhat greater
than 0.02 and still have the overall chance of a false positive claim of any type limited to 5%.

3.3. Interaction analysis plan

A third possible analysis plan is to decide whether to compare the treatments overall or within the
test positive and test negative subsets based on a preliminary test of interaction. The interaction test
comparing the treatment effects for those two subsets should be one-sided, and performed at a threshold
above the traditional 5% level. The larger sample size usually needed for testing for interaction at a
two-sided 5% level cannot generally be justified as it requires exposing an excessive number of test
negative patients to a treatment from which they are unlikely to benefit. In the example described above,
the interaction test will have approximately 93.7% power at a one-sided significance level of 0.10 for
detecting an interaction with 50% reduction in hazard for test positive patients and no treatment effect in
test negative patients. Detailed results for this analysis plan are available using the web-based program
described earlier.

4. Designs that explore a small number of classifiers

The prospective drug and companion diagnostic test approach is being used today in the development
of many new cancer drugs where the biology of the drug target is well understood. Because of the
complexity of cancer biology, however, there are many cases in which the biology of the target is not
well understood at the time that the Phase III trials are initiated. We have been developing adaptive
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designs for these settings. The designs are adaptive, not with regard to sample size or randomization
ratio, but rather with regard to the subset in which the new treatment is evaluated relative to the control.

For example Jiang et al. [16] described the ‘adaptive threshold design’ for settings where a single
predictive biomarker candidate is available but no threshold of positivity for the marker is predefined. A
randomized clinical trial comparing a new treatment E to a control C is performed. The score is measured
in all patients but is not used for restricting eligibility. I will present here a modification of the global test
of the null hypothesis used by Jiang et al. Assume that there areK candidate threshold values b1; : : :; bK
and let lk denote the log likelihood ratio of treatment effect for the patients with biomarker value > bk .
Let bk� denote the threshold for which these log likelihood ratios are maximized and let lk� denote the
maximum value. The null distribution of lk� was approximated by repeating the analysis after permuting
the treatment and control labels several thousand times. If the permutation statistical significance of lk�
is less than 0.05 then the global null hypothesis that treatment E is completely ineffective is rejected.
Jiang et al. provided bootstrap confidence intervals for the threshold above which treatment E is effective.
They also provided approaches to sample size planning.

The analysis plan used in the adaptive threshold design is based on computing a global test based
on a maximum test statistic. For the adaptive threshold design, the maximum is taken over the set of
cut-points of a biomarker score. This approach can also be used when one has a set of candidate binary
biomarkers and one wishes to test whether there is a treatment effect in a subset determined by a positive
value of any single marker.

5. Predictive analysis of clinical trials

Freidlin and Simon [17] also published an adaptive signature design for settings where a single or small
number of candidate classifiers are not available at the start of the Phase III clinical trial. At the time of
final analysis, one starts by comparing outcomes for the treatment group E to the control group C for all
randomized patients. If this overall treatment effect is not significant at a reduced level ˛1, the full set P
of patients in the clinical trial is partitioned into a training set Tr and a validation set V. A prespecified
algorithmic analysis plan is applied to the training set to generate a classifier Cl(x;Tr). This classifier is
a function that identifies the patients who appear to benefit from the new treatment. Cl(x;Tr)=1 means
that a patient with covariate vector x is predicted to benefit from E whereas Cl(x;Tr)=0 indicates that a
patient is not predicted to benefit from E This is a predictive classifier based on comparing two treatment
groups, not the more familiar kind of prognostic classifier for a single group. This classifier is developed
based on analyzing outcome and covariates for the two treatment groups in the training set. Freidlin
and Simon developed a weighted voting predictive classifier based on genes whose expression levels
indicate an interaction with treatment in predicting outcome. Many other types of classifier development
algorithms are possible and the design can be used broadly, not just when the covariates represent gene
expression measurements. For example with survival data one could use a proportional hazards model

log
h.t I x; ´/

h0.t/
D ˛´C ˇ0xC ´�0x

where ´ is a treatment indicator ´ D 0 for C and ´ D 1 for E and x denotes the vector of covariates.
This model can be fit by maximizing the penalized log partial likelihood with separate penalties on
the components of the main effect vector ˇ and the treatment by interaction vector �. The difference
in hazard for a patient with covariate vector x receiving treatment E compared with that same patient
receiving treatment C is estimated by ı.x/ D Ǫ C O�0x. This function can be used to classify patients in
the validation set. Patients with the most negative values of ı.x/ are predicted to be the most likely to
benefit from E relative to C.

Once a single completely specified classifier is defined on the training set, it is used to classify the
patients in the validation set as either ‘sensitive’ or ‘insensitive’ to treatment E. Let S denote the set of
sensitive patients in the validation set; that is, SD fj"VjCl.xjTr/D 1g. One then compares outcomes for
these sensitive patients in the validation set who received E to the sensitive patients in the validation set
who received C. If the statistical significance value for this comparison is less than 0.05–˛1 (e.g., 0.02),
then treatment E is considered superior to C for the subset of the patients predicted to be sensitive using
the classifier developed in the training set.
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Freidlin et al. [18] recently demonstrated that the power of this approach can be substantially increased
by embedding the classifier development and validation process in a K-fold cross-validation. This idea
is very powerful and much more broadly applicable than in the context described by Freidlin et al.
[18] Although the details of this approach will not be repeated here, the concept is to prospectively
define an algorithm for developing a predictive classifier using covariate vectors, treatment indicators,
and outcomes for patients represented in a set of data. Applying the algorithm to the full set of patients
treated in the clinical trial provides a classifier that can be used for future patients. We call this the
‘indication classifier’. A conservative estimate of the treatment effect for future classifier positive patients
is obtained by employing a K-fold cross-validation procedure. The classifier development algorithm
is applied to K cross-validated training sets and used to classify the patients in the corresponding K
cross-validated validation sets. When that is completed, all patients in the trial have been classified.
The two treatment groups are then compared in the subset of classifier positive patients and the treat-
ment effect estimated. Using that estimated treatment effect as a test statistic, its null distribution is
approximated by permuting treatment labels and repeating the entire procedure thousands of times.
Although computationally intensive, it is feasible on a desktop computer.

If the cross-validated treatment effect in classifier positive patients is statistically significant, the
indication classifier recommended for future use is the one obtained by applying the algorithm to the
full dataset. The K-fold cross-validation provides a proper statistical significance test and provides an
estimate of treatment effect for this full sample classifier. Freidlin et al. showed that the cross-validated
hazard ratio in the classifier positive subset is a conservative estimate of the hazard ratio for the sensitive
set of the full sample classifier.

Applying the prespecified algorithm to bootstrap samples of the patients P in the trial provides infor-
mation about the stability of the subset who benefit from the new treatment. Although the precision of
the identification of this sensitive subset will be limited by the size of the clinical trial, information about
specificity of treatment benefit may be substantially greater than with standard methods in which all
future patients are presumed to benefit or not benefit from one treatment or the other.

The effectiveness of the indication classifier depends on the algorithm used. Algorithms that over-fit
the data will provide classifiers that make poor predictions and this will be reflected in the cross-validated
estimate of treatment effect for classifier positive patients. Algorithms based on Bayesian models with
many parameters and noninformative priors may be as prone to over-fitting as frequentist models with
too many parameters. The effectiveness of an algorithm will also depend on the dataset, that is, the
unknown truth about how treatment effect varies among patient subsets. A strong advantage of the pro-
posed approach, however, is that an almost unbiased estimate of the treatment effect in future classifier
positive patients can be obtained from the dataset of a clinical trial itself. This is clearly preferable to
performing exploratory analysis on the full dataset without any cross-validation, reporting the very mis-
leading goodness of fit of the model to the same data used to develop the model, and cautioning that the
results need testing in future clinical trials.

This approach to PACT will be illustrated using data from an old clinical trial in which 506
patients with prostate cancer were randomly allocated to be treated with either placebo, 0.2 mg
of diethylstilbestrol (DES), 1.0 mg DES, or 5.0 mg DES (19). The two lower doses (placebo and
0.2 mg DES) and the two higher doses (1.0 mg DES and 5.0 mg DES) were combined for analysis.
The end-point was overall survival (death from any cause). Covariates considered for this analysis were
(i) age: in years; (ii) performance status (pf) normal activity (1) versus less than normal (0); (iii) size
of primary tumor in (cm2/ (sz); (iv) stage-histologic grade Index (sg); and (v) serum phosphatic acid
phosphatase level (ap)

After removing records with missing observations in any of these covariates, 485 observations
remained. The classifier development algorithm involved simply fitting a proportional hazards regression
model including main effects of treatment and all five covariates and treatment by covariate interactions
for each covariate. For any training set, let Ǫ and O� denote the maximal partial likelihood estimates of
main effect of treatment and vector of five treatment by covariate interaction coefficients. For any patient
with covariate vector x, the difference between the estimated log hazard ratio if the patient receives
treatment E and the estimated hazard ratio if the patient receives treatment C is Ǫ C O�0x. The estimated
main effects drop out of this difference in predictive index values. For each loop of the cross-validation,
a patient in the validation set was classified as sensitive to E if Ǫ C O�0x 6 c where c was the median of
these values for the training set.

Figure 3 shows survival curves for the overall set of patients. These curves represent the conventional
analysis and the logrank significance value is 0.09. The results of applying the predictive algorithm

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3031–3040
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Figure 3. Comparison of survivals by treatment for prostate cancer patients over-all [19].

Figure 4. Comparison of survivals by treatment for prostate cancer patients classified as likely to benefit from
hormonal treatment based on cross-validated classifiers.

in a 10-fold cross-validation loop are shown in Figures 4 and 5. Figure 4 shows the Kaplan–Meier
survival curves by treatment for patients classified as likely to benefit from E in the 10 loops of the cross-
validation. Figure 5 shows the curves for the complementary subset predicted as less likely to benefit
from the high dose regimens. On the basis of 500 (more are desirable) permutations of the treatment
labels (and repeating the complete cross-validation procedure for each permutation), the survival curves
in Figure 4 are statistically significantly different (p D 0:002). Survival for patients in Figure 5 receiving
the higher dose hormonal treatments are worse than for the control group although the difference is not
statistically significant by permutation analysis.

Applying the model development algorithm to the full dataset gives a proportional hazards model that
can be used for informing treatment selection for future patients. The estimates of regression coefficients
for that model are shown below. The nominal statistical significance value for each of those coefficients
is shown although those p values play no role in the use of this model for predictive analysis.
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Effect Estimated coefficient Nominal p-value

Treatment –2.195 0.12
Age 0.002 0.85
Performance status (pf) –0.260 0.25
Size (sz) 0.020 0.001
Stage-grade (sg) 0.113 0.004
Acid phosphatase (ap) 0.002 0.21
Treatment*age 0.050 0.003
Treatment*pf –0.743 0.026
Treatment*sz –0.010 0.26
Treatment*sg –0.074 0.19
Treatment*ap –0.003 0.11

Figure 5. Comparison of survivals for treatment for prostate cancer patients classified as unlikely to benefit from
hormonal treatment based on cross-validated classifiers.

Figure 6. A predictive classifier was developed for each bootstrap sample of cases of prostate cancer data. The
proportion of indication classifiers giving the same classification (likely to benefit from experimental treatment
or not likely to benefit) was determined for each patient. The proportion is an indication of the stability of the

classification. Figure shows a histogram of these proportions.

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3031–3040
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The hazard ratio for high dose versus control treatment increases with age and decreases with
improved performance status (pf = 1 denotes normal activity). That is, the higher dose regimens tend
to benefit younger patients and patients with good performance status. The median value of Ǫ C O�0x
for the full dataset is –0.134. The full dataset classifier was redeveloped based on bootstrap samples to
estimate the stability of classification. Figure 6 shows that classification is very stable for the majority
of patients. These observations are consistent with the interpretation previously published by Byar et al.
that higher doses of diethylstilbestrol are contraindicated for older patients because of cardiovascular
toxicity [19].

6. Conclusion

Developments in biotechnology and genomics have increased the focus of biostatisticians on prediction
problems. This has led to many useful developments for predictive modeling where the number of
variables is larger than the number of cases. Heterogeneity of human diseases and new technology for
characterizing diseased tissue presents new opportunities and challenges for the design and analysis
of clinical trials. In oncology, treatment of broad populations with regimens that do not benefit most
patients is less economically sustainable with expensive molecularly targeted therapeutics. The estab-
lished molecular heterogeneity of human diseases requires the development of new paradigms for the
use of randomized clinical trials as a reliable basis predictive medicine [1, 2]. Prospective designs for
the development of new therapeutics with candidate predictive biomarkers have been presented here
including an approach to the PACT. This approach preserves the Type I error of the study and uses
resampling to develop and validate a predictive classifier that can be used to inform treatment selection
for future patients. This approach provides a statistically sound framework for bridging the gap between
clinical trials and clinical practice that has long existed and may serve as a basis for clinical trials in the
era of predictive medicine.

Acknowledgement

I wish to acknowledge Dr. Jyothi Subramanian for the analysis of the prostate cancer example.

References
1. Simon R. An agenda for clinical trials: Clinical trials in the genomic era. Clinical Trials 2004; 1:468–470.
2. Simon R. New challenges for 21st century clinical trials. Clinical Trials 2007; 4:167–169.
3. Peto R, Pike MC, Armitage P. Design and analysis of randomized clinical trials requiring prolonged observation of each

patient: I. Introduction and design. British Journal of Cancer 1976; 34:585–612.
4. Peto R, Pike MC, Armitage P. Design and analysis of randomized clinical trials requiring prolonged observation of each

patient: II Analysis and examples. British Journal of Cancer 1977; 35:1–39.
5. ISIS-2 Collaborative Group. Randomised trial of IV streptokinase, oral aspirin, both or neither among 17187 cases of

suspected acute myocardial infarction. Lancet 1988; 2:349–360.
6. Dixon DO, Simon R. Bayesian subset analysis. Biometrics 1991; 47:871–881.
7. Sawyers CL. The cancer biomarker problem. Nature 2008; 452:548–552.
8. Simon R. A roadmap for developing and validating therapeutically relevant genomic classifiers. Journal of Clinical

Oncology 2005; 23:7332–7341.
9. Simon R, Maitournam A. Evaluating the efficiency of targeted designs for randomized clinical trials. Clinical Cancer

Research 2005; 10:6759–6763.
10. Simon R, Maitournam A. Evaluating the efficiency of targeted designs for randomized clinical trials: Supplement and

Correction. Clinical Cancer Research 2006; 12:3229.
11. Maitournam A, Simon R. On the efficiency of targeted clinical trials. Statistics in Medicine 2005; 24:329–339.
12. Simon R. Using genomics in clinical trial design. Clinical Cancer Research 2008; 14:5984–5993.
13. Simon R. Designs and adaptive analysis plans for pivotal clinical trials of therapeutics and companion diagnostics. Expert

Review of Molecular Diagnostics 2008; 2(6):721–729.
14. Simon R, Wang SJ. Use of genomic signatures in therapeutics development. The Pharmacogenomcs Journal 2006;

6:1667–1673.
15. Wang SJ, O’Neill RT, Hung HMJ. Approaches to evaluation of treatment effect in randomized clinical trials with genomic

subset. Pharmaceutical Statistics 2007; 6:227–244.
16. Jiang W, Freidlin B, Simon R. Biomarker adaptive threshold design: A procedure for evaluating treatment with possible

biomarker-defined subset effect. Journal of the National Cancer Institute 2007; 99:1036–1043.
17. Freidlin B, Simon R. Adaptive signature design: An adaptive clinical trial design for generating and prospectively testing

a gene expression signature for sensitive patients. Clinical Cancer Research 2005; 11:7872–7878.
18. Freidlin B, Jiang W, Simon R. The cross-validated adaptive signature design for predictive analysis of clinical trials.

Clinical Cancer Research 2010; 16(2):691–698.
19. Byar D. Treatment of prostatic cancer: Studies by the Veterans Administration Cooperative Urological Research Group.

New York Academy of Medicine 1972; 48(5):751–766.

3040

Copyright © 2012 John Wiley & Sons, Ltd. Statist. Med. 2012, 31 3031–3040


